Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Abstract

AgGateway's PAIL project emerged from an initiative by the Northwestern Energy Efficiency Alliance (NEEA) to optimize the use of energy (and consequently, water) in irrigation. It became clear that a major obstacle to the scalability of this pursuit was the lack of interoperability among the manufacturers of irrigation equipment, environmental sensors, farm management information systems (FMIS) and service providers. NEEA identified developing an industry-wide agreement on data standards as the first step needed to overcome that obstacle; PAIL was created for that purpose.

...

Although the impact of climate change on crop yields varies from region o region, a global average 32–39% of the maize, rice, wheat and soybean year-to-year yield variability is explained by climate variability. This translates into climate explained annual production fluctuations of ~22 million tons, ~3 million tons, ~9 million tons and ~2 million tons for maize, rice, wheat and soybean, respectively. 
(Ray, D. K. et al. Climate variation explains a third of global crop yield variability. Nat. Commun. 6:5989 doi: 10.1038/ncomms6989 (2015).

Climate change, including climate variability, has a direct impact on water availability and irrigation. Notably the loss of ground and surface water, as well as increases in evapotranspiration will place greater stress on the limited availability of fresh water. (Connor J, Schwabe K, King D, Kaczan D, Kirby M (2009) Impacts of climate change on lower Murray irrigation. Australian Journal of Agricultural and Resource Economics 53: 437–456.)Multiple studies have concluded that climate change will have an impact on water availability for agriculture. Notably the loss of ground and surface water, as well as increases in evapotranspiration will place greater stress on the limited availability of fresh water. (Connor J, Schwabe K, King D, Kaczan D, Kirby M (2009) Impacts of climate change on lower Murray irrigation. Australian Journal of Agricultural and Resource Economics 53: 437–456.)

...

Precision irrigation has can increase both water and energy efficiencies by optimally matching the water requirements for a given crop within a specific area of a field, thereby either reducing costs or increasing yield for the same inputs of water and energy. Ideally, an integrated Integrated precision irrigation solution is solutions are built on the premise that growers and irrigators can:

...