

Ok to Spray Applications of Variable Rate and other Precision Ag Technologies

R. Andrés Ferreyra, Ag Connections, Inc.; Todd Howatt, AGCO; Joe Tevis, TOPCON;

> To be presented at InfoAg August 2-4 2016

Objectives

- Standards Development
- Standards Progress since 2007
- Spray Drift Explained
- Precision Ag Technologies Relevant to Spray Drift Mitigation
- Summary

Standards in Precision Ag

Conflicts in Data Standards Development

Universality vs. Regional & Cultural Specificity

Development of standards which can successfully be applied globally but can also be adapted to meet unique regional needs without modification of the core data elements.

Interoperability vs. Opportunity for Innovation

Development of standards which facilitate interoperability and data transfer between systems and also provide opportunity for innovation by entrepreneurial individuals and companies.

Support of Information Agriculture with the ISO 11783 Data Transfer Standard

6ECPA – Skiathos Greece – June 07

Joe W. Tevis, Ph D., Director Nyle Wollenhaupt, Ph D., Worldwide Agronomy Michael Schmidt, Technical Lead, Embedded SoftwareAGCO Global Technologies

Precision Ag Functions Reviewed (2007)

Data Logging – Sensors

Single Product Variable Rate – Map Based

Task Data Logging - Application

Task Data Logging - Harvest

Section Control

Multiple Product Variable Rate – Map Based

Task Data Logging – Crop Assurance

Task Planning – Auto Steering

Single Product Variable Rate – Sensor Based

Well Supported Well Supported Well Supported Well Supported Well Supported Supported – with qualifications Supported – with qualifications Not Supported Not Supported

Auto-Steering

2007

• ISO 11783 – 10: NOT SUPPORTED

Today

- ISO 11783 10: Guidance Data Elements
- GuidanceAllocation
- Guidance Group
- GuidanceShift

7

Product Identifiers

- 1. Multiple Product Variable Rate
- 2. Task Data Logging Crop Assurance

2007

• ISO 11783 – 10: Identified by user defined strings uniqueness of "file" scope

÷						
	Attribute	XML	Use	Туре	Length/range	Comment
	Productid	A	r	xs:ID	min. 4 to max. 14	Unique identifier of product Format: (PDT PDT-)([0-9])+ Records generated on MICS have negative IDs
	ProductDesignator	В	r	xs:string	<u>max</u> . 32	Product designator/name

Table D.42 — Product attributes

The same ruled applied to all entities or coding data (grower, farm, field etc.)

Today

- ISO 11783 10 (2014) : Annex E
 - Allows for multiple unique identifiers for all coding data (products, grower, farm, field, worker etc.)
 - Uniqueness defined by business...potentially global
- AgGateway ADAPT: ContextItem & CompoundIdentifier
 - Aligns with Annex E
 - Development of Geo-political Context Item Service

Level 2: Preventing the problem

There are two ways of looking at this:

- Static: Use the precautionary principle to evaluate OK2S under worst-case conditions
- Dynamic: Evaluate OK2S under current conditions

Resolvable URI Product Identifiers

ISO 11783-10 Annex E defines four types of identifiers:

- 1. UUIDs (ISO/IEC 9834-8)
- 2. Manufacturer Proprietary (GLN, ManufacureGLN)
- 3. Unique Resolvable URIs (Link to GS1)
 - Informational Resolvable URIs

```
<LGP A="LGP01" B="4" E="Roundup">
<LNK A="PDT1" B=" <u>http://roundup.ca/en/labels-msds</u> "/>
</LGP>
```

```
<LGP A="LGP02" B="4" E="Corn Details">
<LNK A="CTP1" B=" <u>https://contextitem.org/2000?value=A2</u> "/>
</LGP>
```


Opportunity for Innovation

- Data Standards Defines
 - Structure for linking unique identifiers to entities (products, grower, farm, field, etc.)
 - File transfer format
 - xml format for URI
- Opportunities
 - Reference data providers
 - Provide reference data and other useful content supported by the ISO 11783 Annex E and/or ContextItem format
 - FMIS
 - Efficient easy to use system for managing multiple unique identifiers
 - MICS (Terminal)
 - Wireless internet connection
 - Method to display and navigate URI content

Sensor Based Control

2007

- ISO 11783 10: NOT SUPPORTED
 - Control limited to manual control and maps.

Today

• ISO 11783 – 10: Peer Control

Opportunity for Innovation

Data Standards Defines

- Integration of Peer Control Function in ISOBUS
- Sensor input formats
- Setpoint formats

- Opportunities
 - Sensor Development
 - MICS
 - Proprietary Peer Control Function

Peer Control Function(s)

Section/Dispense Point Control

Pre-Planned Control Areas

- Field boundaries
 - Inclusions (holes)
 - Exclusions (islands)
- "No Spray" (Buffer) zones

Level 2a: Preventing the problem statically

- Show how OK to Spray * Precautionary Principle \rightarrow Buffer zone
- Deliverable (in the form of buffer zones) is available during the planning stage
- Show what PAM is doing
- Pro: Easy
- Con: Restrictive, potentially inefficient, potentially not enough

Introduction

Pesticide Application Manager

Field Presentation Münchweiler, 25.06.2015 Martin Scheiber

ZEPP – Central Institute for Decision Support Systems in Crop Protection

Background

• **Title**: PAM (Pesticide Application Manager): Decision Support in Crop Protection based on Terrain, Machine, Business and Public Data

Pesticide Application Manager

PAM – Decision Support System

Pesticide Application Manager

Aggateway

Opportunity for Innovation

- Data Standards Defines (In development)
 - Protocol for requesting a buffer zone
 - Format of buffer zone for import into MICS
 - Controlled vocabulary for buffer zone label (smart boundaries)
- Opportunities
 - Web Service
 - Proprietary algorithm for calculation of the buffer zone
 - Real/near real time delivery

Calculation of Legal Bufferzones

Spray Drift Explained

The Physics and Chemistry of Spray Drift

DRIFT MITIGATING ADJUVANTS – HOW THEY WORK

2016 Annual TPSA Conference

Presented by Ray Pigati, WinField

Droplet Fate

- 1. On-Target application: the goal is 100%!
- 2. Missing the target
- 3. Run or bounce off of leaf
 - Big Droplets: > 600 µm
- Evaporation: very small droplets
 - Tiny Droplets: < 50 µm
- 5. Drift: off-target deposition
 - Small Droplets: 50-200 µm

The Effect of Wind Velocity and Droplet Size on Distance Traveled from Point of Origin

Impact of Pressure on Droplet Size

Impact of Nozzle Selection on Drift

% Driftable Fines 11004 Nozzles

Impact of Adjuvants

Spray Drift

Spray Drift = **F** (droplet size, wind, boom height,...)

Droplet Size = **T** (pressure, nozzle, contents, adjuvants)

Machine Control Systems Supported by ISO 11783 -10 Relevant to Drift Mitigation

Variable Flow Rate Control System

DDI	DDEName	Description	Units
1	Setpoint volume per area application rate	Setpoint Application Rate specified as volume per area	mm ³ /m ²
2	Actual volume per area application rate	Actual Application Rate specified as volume per area	mm ³ /m ²

Variable Pressure Control System

DDI	DDEName	Description	Units	
193	Setpoint Product Pressure	Setpoint Product Pressure to adjust the pressure of the product flow system at the point of dispensing.	Ра	
194	Actual Product Pressure	Actual Product Pressure is the measured pressure in the product flow system at the point of dispensing.	Ра	

Boom Height Control System

DDI	DDEName	Description	Units
61	Setpoint working height	Setpoint Working Height of Device Element above crop or soil	mm
62	Actual working height	Setpoint Working Height of Device Element above crop or soil	mm

Drift Mitigating Adjuvants

- Tank Mixes
- Direct Injection limit to high risk areas

Level 3: Managing the problem

An **OK2S standard** plus **interoperable real-time data sources** could enable machinery to **dynamically adapt** to changing conditions to **remain OK2S** under a wider set of conditions.

Multi-objective optimization problem, constrained by the need to remain OK to Spray at all times.

The optimization problem

Dynamic Drift Mitigation Control

Opportunity for Innovation

Data Standards Defines

- Integration of Peer Control Function in ISOBUS
- Sensor input formats
- Setpoint formats

- Opportunities
 - New Sensor Development ??
 - Droplet size
 - Drift Measurement
 - MICS

Peer Control Function(s)

- Proprietary Peer Control Function
 - Reads specified sensor input(s): wind speed, temp, crop height, etc.
 - Outputs setpoint (s): pressure, boom height, adjuvant rate, etc.

Summary

- Many of the machine control functions required to address drift are currently supported by ISO 11783
- ISO 11783 enhancements
 - Nozzle selection
 - DDI for nozzle classification
 - DDI for boom height
- Opportunities for Innovation
 - URI linked content linked to chemical products
 - Services for buffer zone creation & delivery
 - Sensor development
 - Peer Control Functions for "Adaptive Sprayers"

THANK YOU

