
ASABE Annual International Meeting 1

1

An ASABE Meeting Presentation
DOI: 10.13031/aim.202462418
Paper Number: 2462418

Filling in the blanks with ContextItems: a lightweight
method for extending field operations object models

Daggett, Dennis G.2; Ferreyra, R. Andres1; Reddy, Linga T.4; Rhea, Stuart T.1; Tevis, Joe W.3
1Ag Connections, Murray, KY, United States; 2 ProAg Management, LLC, Amarillo, TX, United States;

3 TOPCON, Minneapolis, MN, United States; 4 John Deere ISG, Urbandale, IA, United States

Written for presentation at the
2016 ASABE Annual International Meeting

Sponsored by ASABE
Orlando, Florida
July 17-20, 2016

ABSTRACT. Precision agriculture (PA) is still limited by a lack of hardware/software systems interoperability. AgGateway,
a nonprofit consortium of 240+ companies, leveraged its wide cross-section of PA stakeholders to propose a collaborative
solution: its ADAPT team created an open-source, field operations common object model. The goal: replace current
systems’ need to support multiple, incompatible data formats, with a single integration to the common object model and a
system of manufacturer-specific format-conversion plug-ins. This enables reading/writing to new systems with marginal
development cost. The common object model meets requirements from AgGateway’s SPADE and PAIL projects, including
compatibility with the ISO11783-10 standard (ISOXML) and participant companies’ own systems.
Internationalization is important for this work, but conflicting requirements must be reconciled: ADAPT developers must
seek universality, staying free of regionally-specific clutter. However, different geographies’ business processes involve
context-specific data (e.g., USA EPA product numbers.) If these "context items" are not accommodated, the common object
model’s relevance suffers. Additionally, it is desirable to use a controlled vocabulary. However, the dynamic nature of
business and regulation requires this vocabulary to be easily extensible. ADAPT reconciled the contradictions by defining
an object class, the ContextItem (CI), that can be attached to various other objects in the common object model. A
ContextItem is a key/value structure where the “key” code references a ContextItemDefinition (CID) that defines what
each CI means. The “value” is composed of a string value along with data needed to interpret it (such as a unit of
measure) or a nested list of other CIs (e.g. PLSS cadastral information.) AgGateway’s SPADE project implemented a
RESTful API to provide a machine-readable vocabulary of CIDs; its Standards & Guidelines Committee created an ad-
hoc group to manage the vocabulary. The CI system can be used jointly with ISOXML’s feature of associating unique IDs
to its own locally-scoped IDs (defined in ISO11783-10 Annex E.) This enables adding geopolitical-context-dependent data
to ISOXML’s otherwise generic and highly machine-specific scope, with no modifications.
Keywords. codes, information systems, international, ISO, standards.

The authors are solely responsible for the content of this meeting presentation. The presentation does not necessarily reflect the official position of the
American Society of Agricultural and Biological Engineers (ASABE), and its printing and distribution does not constitute an endorsement of views
which may be expressed. Meeting presentations are not subject to the formal peer review process by ASABE editorial committees; therefore, they are not
to be presented as refereed publications. Citation of this work should state that it is from an ASABE meeting paper. EXAMPLE: Author’s Last Name,
Initials. 2016. Title of presentation. ASABE Paper No. ---. St. Joseph, MI.: ASABE. For information about securing permission to reprint or reproduce a
meeting presentation, please contact ASABE at http://www.asabe.org/copyright (2950 Niles Road, St. Joseph, MI 49085-9659 USA).1

http://www.asabe.org/copyright

ASABE Annual International Meeting Page 2

Introduction
Precision agriculture (PA) is a promising set of technologies, but is still limited by a lack of hardware and software

systems interoperability. Users of precision agriculture spend a lot of time moving data among various proprietary systems
and converting among multiple proprietary formats; this limits adoption and the perceived value of PA.

Concurrently, current trends in sustainability, traceability, and compliance reporting demand an ever-increasing amount
of data be gathered as part of everyday operations in modern production agriculture. This requirement usually includes
significant amounts of frequently-changing geopolitical-context-dependent information such as identification numbers
specific to the government agencies the grower interacts with in their jurisdiction. Fulfilling all of these requirements in
the data model of farm management information system (FMIS) software is a moving target, unless it were somehow
possible to decouple the infrequently- and frequently-changing aspects of the FMIS data model.

In terms of requirements thus placed on a data model, an FMIS object model should simultaneously be:
• generic, simple and compact enough to be easily understood and used, as well as accepted from an international

perspective (which would suggest staying free of regionally-specific clutter), but still be able to support the
capture & communication of necessary region-specific (i.e., geopolitical-context-dependent) data needed by
growers and their partners as part of their business processes (simple/generic vs comprehensive/specific)

• able to express data with a controlled vocabulary (so everyone can understand what it means), but allowing that
controlled vocabulary to be continually updated to match the nature of data requirements (static vs dynamic)

AgGateway (www.aggateway.org), a nonprofit consortium of about 240 companies dedicated to the implementation of
standards for eAgriculture, created its Precision Agriculture Council in 2010 to collaboratively tackle these interoperability
problems. This led to the creation of the ADAPT team, charged with implementing a toolkit to provide the industry with a
common object model for field operations as well as a set of format conversion tools (AgGateway, 2016).

The ADAPT common object model meets requirements from AgGateway’s SPADE (planting, crop care, harvest and
post-harvest - themed) and PAIL (irrigation, observations and measurements - themed) projects, as well as compatibility
with the ISO11783-10 standard XML format (ISO, 2015) and participant companies’ own systems.

The relatively-static core object components of the ADAPT framework were defined in a minimalistic way, but the
problem remained of how to represent frequently-changing and/or geopolitical-context-dependent data. The team decided
to implement this by providing the core objects with placeholders for attaching key /value pair – derived objects called
ContextItems.

Key / value pairs are straightforward, and powerful in their simplicity. The approach has the weakness, however, that
the key is limited in how much shared meaning it can effectively communicate without compromising the brevity that is a
valuable feature of the approach. The solution chosen by the ADAPT Team was to create a controlled vocabulary of keys
that would allow for the detailed description of the ContextItems, albeit kept separate from the usage of the ContextItems
themselves (but available to all of the parties exchanging data).

AgGateway’s SPADE3 project (AgGateway, 2015) implemented a RESTful API to provide a machine-readable
vocabulary of ContextItem definitions. Furthermore, AgGateway’s Standards & Guidelines Committee created an ad-hoc
group to manage the vocabulary.

The same approach can be used to graft additional, semantically-rich data onto objects from other data models such as
the elements defined in ISO 11783-10. The ContextItem system can be used jointly with ISOXML’s feature of associating
unique identifiers to its own locally-scoped identifiers defined in ISO11783-10 Annex E (ISO, 2015). This enables adding
geopolitical-context-dependent data to ISOXML’s otherwise generic and highly machine-specific scope, with no
modifications.

The goal of this paper is to present the ContextItem system as a simultaneous solution for satisfying the aforementioned
conflicting sets of requirements: simple/generic vs comprehensive/specific, and static vs dynamic. We will first present
some basic ideas regarding how identity is implemented in the ADAPT data model, followed by a general description of
the ContextItem system data model, and specific description of the properties (or attributes, we will use the terms
interchangeably) of ContextItems and their definitions. We will then present examples of the different types of
ContextItem definitions, and discuss implications and future direction of the work.

Basic ADAPT model concept: Identity and the CompoundIdentifier
Many objects specified in the ADAPT common object model in general, and in its subset model the ContextItem

system in particular, are used by reference in other objects (for example, a grower, farm and field may be referenced in a
work order) and thus need identifiers that can be used by the referencing object. Figure 1 shows a Unified Modeling
Language (UML) class diagram (ISO/IEC, 2005) of the mechanism used by ADAPT to do this. It centers on an object
class called CompoundIdentifier, which serves two purposes:

• First, the CompoundIdentifier allows its parent object to be used by reference from other objects, by providing a
simple integer identifier (ReferenceId) for use in the local scope of any particular instance of a data model. In

ASABE Annual International Meeting Page 3

dealing with especially large datasets, the ability to use objects by reference results in a smaller footprint when
persisting to storage or attempting transmission.

• Second, it enables the association of multiple unique identifiers (UniqueId) to an object. This allows for an
enhanced exchange of data between different systems because each system can include its internal, unique
identifier for an object without compromising any of the others.

A historic pain point in data exchange has been that systems vary in the way chosen to construct unique identifiers. For
example, Company A might use integers as their unique (albeit only inside their system) identifier; Company B may use
UUIDs (globally unique). The two systems are fundamentally incompatible, but each may be appropriate for the
corresponding company’s processes. It is for this reason that the UniqueId class uses a combination of string (Id) and
enumeration (UniqueIdTypeEnum) to fully describe the unique identifier: it enables the support of a broad variety of
identification methods.

Each UniqueId can thus be of four different types (The UniqueId itself is stored as a string, but the type of UniqueId is
specified with the CIType attribute.):

• A Universally Unique Identifier, or UUID (Leach et al., 2005).
• An arbitrary string (meant to accommodate proprietary alphanumeric identifiers)
• A long integer (meant to accommodate proprietary integer identifiers)
• A uniform resource identifier, or URI (W3C/IETF, 2001).

CompoundIdentifiers are meant to be used in a distributed context, where a document may circulate among two or
more FMIS. Since each FMIS may have its own set of unique identifiers (for chemical or seed products, for example),
UniqueIds can specify their originating organization / issuing authority by populating the Source attribute with either a
Global Location Number / GLN (GS1, n.d.) or a URI. The SourceType attribute specifies the type of source identifier
being used.

Figure 1: UML Class diagram for CompoundIdentifier and associated classes.

ContextItem System Data Model
Figure 2 shows a simplified (in that the classes’ attributes are not shown) data model of the ContextItem system,

emphasizing the relationships among the classes. (The CompoundIdentifier and associated classes shown in Figure 1 are
not shown, for clarity.)

Table 1 provides a brief description of the purpose of each class, including whether it is a simple enumeration, whether
it is used by value or reference, and how it relates to others.

ASABE Annual International Meeting Page 4

Figure 2: Simple class diagram showing the ContextItem system classes and their relationships. Solid diamonds represent lists assembled

with composition relationships (i.e., the child objects are directly inserted by value into the parent) whereas hollow diamonds represent lists
assembled through aggregation (the child objects “stand alone” and are referenced using the ReferenceId of their CompoundIdentifier. Arrows
with no diamonds represent relationships with single instances of objects, typically by composition.

Table 1: ContextItem system class descriptions

Class Type Description
ContextItem Object A key / value pair used to attach geopolitical-context-dependent

information to other objects in ADAPT, ISO11783 files, etc.
ContextItemDefinition Object A definition of a specific kind of ContextItem, including the type of data

it can contain, what classes in an object model it can be attached to, and
how to display/enter instances of it.

ContextItemValueTypeEnum Enumeration An enumerated type that describes the type of value carried by the
ContextItem (Integer, Boolean, Double-precision floating point, string,
enumeration, datetime, nested..)

ContextItemEnumItem Object Description of specific enumeration items for ContextItemDefinitions
with an enumerated ContextItemValueType

GeoPoliticalContext Object Describes a particular jurisdiction or geopolitical context that a
ContextItemDefinition, Lexicalization or Presentation is to be used in
the context of.

Language Object Describes a language (e.g., “en-us” for US English, or “pt-br” for
Brazilian Portuguese) used to express terms in Lexicalizations.

Lexicalization Object Represents a way to express something in a given combination of
GeoPoliticalContext and Language.

ModelScope Object Used by ContextItemDefinition to denote a data model class that a
corresponding ContextItem instance can be attached to.

ModelScopeTypeEnum Enumeration Describes what data model a particular class belongs to. The system
currently supports ADAPT and ISO11783 data models.

Presentation Object Describes how to enter and display a ContextItem instance
corresponding to a given ContextItemDefinition.

CompoundIdentifier Object Provides a mechanism to reference an object from other objects, as well
as a mechanism of associating one or more external unique identifiers to
an object.

UniqueId Object Captures a unique identifier as part of a CompoundIdentifier.
UniqueIdTypeEnum Enumeration An enumerated type that describes what kind of unique identifier is

contained in a UniqueId (Integer, String, URI, UUID).
TimeScope Object Associates a date/time or range thereof to an object. Also encapsulates

the meaning of the timestamp / time interval.
DateContextEnum Enumeration Specifies the meaning of a TimeScope.

ASABE Annual International Meeting Page 5

Properties of ContextItem and ContextItemDefinition
Figure 3 shows the full data ContextItem system model (except for CompoundIdentifier, shown in fig. 1). Specifics

about the attributes / properties of the ContextItem and ContextItemDefinition classes follow.

Figure 3: The ContextItem system data model. CompoundIdentifier (see Figure 1) is not shown, for clarity.

ContextItem

A ContextItem is a single, specific, use of a ContextItemDefinition. Put a simpler way, a ContextItem is a key / value
pair. Its Code property is the "key" (corresponding to the unique Code property of a single ContextItemDefinition), while
the rest of its properties describe the "value".

• The Value property is ALWAYS expressed as a string even though that may not be how it was collected or how it
is expected to be used elsewhere. The ValueType property of the associated ContextItemDefinition supplies the
user with this data type information. In some cases, like the presence of NestedItems, there is no real Value to
record so this property is optional.

• The ValueUOM property contains the optional unit of measure, further defining the Value. A DefaultUOM
property is included with the associated ContextItemDefinition and may be used instead of including it locally
with the ContextItem. In an effort to foster the broadest appeal, UN Rec 20 codes will be the default vocabulary
for expressing units of measure.

• If the ContextItemDefinition has a ValueType of "Nested", the NestedItems collection allows a resulting
ContextItem to support a hierarchical structure of other instances of ContextItem. See the below discussion about
the NestedItemIds property of ContextItemDefinition for further information.

• Notice the inclusion of an optional collection of TimeScope objects. This is used to record the various
relationships a given Value may have with time. For example, there could be a TimeScope that captures when the
Value was recorded and another TimeScope that expresses the duration for which the Value is considered valid.

ContextItemDefinition: Basic Properties

The ContextItemDefinition defines a kind of ContextItem: what it means, how to enter it, display it, where it can be
used, and so forth. It should communicate everything needed to enable that ContextItem to be captured and displayed
appropriately. What follows is a description of the properties of the ContextItemDefinition object, and some of the
rationale behind its design.

ASABE Annual International Meeting Page 6

• The Code property
• is expected to be universally unique within the ContextItemDefinition domain,
• is used as part of the URI that forms the identity of a ContextItemDefinition,
• is the same "key" used by ContextItem in its Code property, and
• is issued by a central authority to ensure its uniqueness.

• Version: Enables change detection. Whenever a member property of ContextItemDefinition is changed, the
Version number is incremented. This allows users who have a cached version of a ContextItemDefinition to
realize that a change has taken place. It does NOT communicate what change was made, by whom, or why it
occurred; only that it has happened. This approach was deemed more reliable than trying to use a "modified date”
time stamp. All ContextItemDefinition(s) start with a Version value of 0.

• Status: Selected from an enumeration of two values: "Active" or "Inactive". There will be situations where a
ContextItemDefinition or one of its ContextItemEnumItems will need to be "retired" from use. However, those
ContextItemDefinition(s) may still be needed in order to interpret historical data. As a result we choose not to
delete things, but to instead mark them as "Inactive". It will be the responsibility of the user to avoid the use of
"Inactive" objects in the generation of new data.

• ValueType: Describes the expected data type for the "value" of a ContextItem. It is expressed as an enumeration
with the values of Bool, String, Double, Integer, DateTime, Enum, and Nested.

• The first five data types (Bool, String, Double, Integer, DateTime) can be easily represented as a string
and then parsed back to their original form. This is the reason why the Value property of ContextItem is
a string.

• The "Enum" data type indicates that this ContextItemDefinition is an encoded enumerated list. The
items in the list are ContextItemEnumItem objects and are included by value in the EnumItems
collection property. When creating a ContextItem using an "Enum" type ContextItemDefinition, the
ContextItem Value property corresponds to the Value property of the selected ContextItemEnumItem.

• The "Nested" data type indicates that this ContextItemDefinition is a container that encapsulates a group
of other ContextItemDefinition(s). When creating a ContextItem using a "Nested" type
ContextItemDefinition, the ContextItem Value property is left empty but its NestedItems property
contains a collection of ContextItem(s).

• Description: A human-readable name that makes it easier to correctly choose the ContextItemDefinition of
interest from a pick list. It is not meant to be a lengthy explanation.

ContextItemDefinitions: Advanced Properties

At this point we have discussed all the properties that are required to define a simple ContextItemDefinition. This
minimum set of information, while sufficient to allow data capture, does little to convey any real meaning. The goal of the
remaining properties is to enable a fuller, semantically-rich description of the target concept and where it can be used.

• Keywords: A collection of strings intended to be an aid for querying. They are expected to be single words.
• Lexicalizations: A collection of Lexicalization objects. The concept that a ContextItemDefinition represents may

be expressed verbally in a number of different ways; not just in different languages, but also using different terms
in the same language. For example, regional differences in the common name of a pest. A Lexicalization object
contains the text, a reference to the language the text is in, and a list of GeoPoliticalContext objects that describe
"where" that terminology is used. We have chosen to use the Internet Assigned Numbers Authority (IANA)
Language Subtag Registry (IANA, n.d.) as the controlled vocabulary for languages.

• Properties: A collection of ContextItem objects. This is how we can supply additional information needed to use the
definition correctly. For example, if a ContextItemDefinition involves capturing values for latitude & longitude, it
might include in the Properties a ContextItem that indicates the geodetic datum is expected to be WGS84.

• NestedDefIds: A collection of references to other ContextItemDefinition(s). This is only populated if ValueType
is set to "Nested". Sometimes there are groups of data points that need to be collected together rather than
individually. For example, the Public Land Survey System used in the United States uses several attributes (such
as the Principal Meridian, Township, Range, and Section) to specify the location of a piece of land for cadastral
purposes. Each attribute is defined through its own ContextItemDefinition, and are represented as ContextItem(s)
that are included by value in the NestedItems property of the PLSS ContextItem. The examples shown below
build up to a PLSS ContextItemDefinition.

• Presentations: a collection of Presentation objects. One of the challenges in collecting quality data is being able
to make sure that it is entered properly. The Presentation object contains a "friendly" name description, regular
expressions (Kleene, 1956) that define how the value is supposed to look when entered or displayed, and a list of
GeoPoliticalContext objects that describe "where" this presentation is used. A regular expression is a sequence of
one or more characters, alone or in groups, which can be used to describe an expected pattern. It is used to test a

ASABE Annual International Meeting Page 7

given string to see if it follows the pattern.
• EnumItems: a collection of ContextItemEnumItem objects. This is how we encode the enumerated values for a

ContextItemDefinition of ValueType "Enum". The ContextItemEnumItem contains some of the same properties
that ContextItemDefinition does. Instead of having a Code property, it has a Value. This Value is expected to be
unique within the domain of the ContextItemDefinition it is attached to. When creating a ContextItem using an
"Enum" type ContextItemDefinition, the ContextItem Value property corresponds to the Value property of the
selected ContextItemEnumItem.

• DefaultUOM: An optional string describing the expected unit of measure. In an effort to foster the broadest
appeal, UN Rec 20 codes (UN CEFACT, 2005) will be the default vocabulary for expressing units of measure.

• AllowConversion: an optional Boolean value that is used in conjunction with the DefaultUOM. This serves as a
flag to determine if the user can allow the value to be entered in a unit compatible with DefaultUOM, or are they
required to use the default unit.

• TimeScopes: an optional collection of TimeScope objects. This collection enables attaching a variety of time-
related attributes to the ContextItemDefinition. For example, a TimeScope could describe when its
ContextItemDefinition was created, another when it was updated, and a third the date range it is valid for.

• ModelScopeIds: A collection of references to ModelScope objects. The ModelScope object represents a business
object in either the ADAPT model or ISO11783 (potentially other models as well). For example, there is a
ModelScope object for the ADAPT Farm class as well as a separate one for the ISO11783 Farm element (FRM).
This coded list of business objects forms the controlled vocabulary we use to specify which objects a given
ContextItemDefinition can be used to describe. Throughout the ContextItem system we have tried to reuse
existing controlled vocabularies where ever we could; the language and geopolitical vocabularies used both point
to external sources. In this case, however, we were forced to create our own.

• GeoPoliticalContextIds: A collection of references to GeoPoliticalContext objects. The GeoPoliticalContext
object represents an entry in an external controlled vocabulary that describes a particular geographic/political
domain or organization. This allows us to tag ContextItemDefinition(s) with a marker that conveys "where" the
data it represents is relevant.

Examples

Simple integer and string data entry ContextItemDefinitions

Figure 4 shows the relevant properties / attributes of an example ContextItemDefinition representing a USDA Farm
Service Agency (FSA) Farm Number, an identifier very frequently used by growers in the United States. Comments:

• It has an (arbitrary, simply meant to be unique within the set of ContextItemDefinitions) Id.ReferenceId.
• It also has a Code, shown as 101, which represents the FSA Farm Number.
• The contents of an embedded (i.e., used by value) Presentation object are shown. Note the regular expression

(Kleene, 1956) used to convey information about how to enter/display the FSA Farm Number value.
• There is a list of keywords, shown in curly braces.
• ModelScopeIds is really a list of integer identifiers; the figure shows them dereferenced into ADAPT object

model class names, in brackets.
• Similarly, the GPCIds list shows a dereferenced identifier for the United States. An FMIS in Belgium, for

example, would know that the FSA Farm Number is not relevant to their geopolitical context.

Figure 4: FSA Farm Number, an example of a simple integer-valued ContextItemDefinition.

ASABE Annual International Meeting Page 8

Numeric ContextItemDefinitions for auxiliary purposes (e.g., ContextItemEnumItems’ Properties)

Figure 5 shows the relevant attributes of an example ContextItemDefinition representing Latitude and Longitude
values. The purpose of this kind of ContextItemDefinition is to provide the infrastructure for ContextItemEnumItems to
express properties. A subsequent example will show how the ContextItemDefinition for Public Land Survey System
Principal Meridians can express the latitude and longitude of each enumerated item’s reference point. This is done through
the use of the Latitude and Longitude ContextItems shown. Comments:

• They have (arbitrary, simply meant to be unique within the set of ContextItemDefinitions) Id.ReferenceIds.
• They have unique Codes, shown as 107 and 108, which represents the Latitude and Longitude concepts.
• Presentation objects are not included, because these ContextItem definitions are not meant to be user-entered.

Figure 5: Latitude and Longitude, examples of floating-point-valued ContextItemDefinitions.

Enumerated ContextItemDefinition

Figure 6 shows the relevant properties / attributes of an example ContextItemDefinition representing a World
Meteorological Organization (WMO) code for cloud type. Comments:

• It has an (arbitrary, simply meant to be unique within the set of ContextItemDefinitions) Id.ReferenceId.
• It also has a Code, shown as 130, which represents the Cloud type / genus concept.
• The ValueType is shown as “enum”. That implies that there must be a list of ContextItemenumItems. There is no

need for a Presentation object, since the user would be shown the ContextItemEnumItems’ Lexicalization strings
corresponding to the user’s Language and GeoPoliticalContext (or, in their absence, the Description). What
would "travel" with the ContextItem, however, would be the ContextItemEnumItems’ Value.

Figure 6: WMO Cloud type / genus, an example of an enumerated ContextItemDefinition.

ASABE Annual International Meeting Page 9

Enumerated ContextItemDefinition with Properties

Figure 7 takes the concept of an enumerated ContextItemDefinition further, with an example that includes Properties on
the ContextItemEnumItems. Comments:

• In this case we are only showing three of the ContextItemEnumItems corresponding to the (much longer) list of
PLSS Principal Meridians, each with its own attribute table.

• Each of the ContextItemEnumItems has its own, private, list of ContextItems: the Properties!
• Each of the Properties shows a forrmat consistent with the ContextItem shown in the model of Figure 2:

• The Code values match the Code specified for Latitude and Longitude in Figure 5.
• A ValueUoM (unit of measure) is specified to remove any ambiguity regarding what the latitude /

longitude Values represent.

Figure 7: PLSS Principal Meridian, an example of an enumerated ContextItemDefinition with Properties

Nested ContextItem

The final example, shown in Figure 8, features a nested ContextItemDefinition: a simplified form of the Public Land
Survey System (PLSS) data mentioned earlier. The ContextItemDefinitions referenced by the NestedDefIds list are
summarized in a separate table. Note how the Id.ReferenceId is used to link the two tables, and not the Code.

Figure 8: PLSS, an example of a nested ContextItemDefinition.

ASABE Annual International Meeting Page 10

Discussion

Enabling incremental progress

The ContextItem system provides a way to preserve the simplicity of data models that utilize it by allowing these
models to first focus on expressing "universal" ideas with their core objects and then enhancing those objects with
geopolitical-context-dependent specifics through ContextItem(s). New models (like ADAPT) can thus start simple and
grow organically over time. Likewise, existing models (like ISO11783) can be extended in a dynamic, data-driven way.
This is all possible because the system provides a powerful test bench for data model improvements: a
ContextItemDefinition (conceivably not restricted to geopolitical-context-dependent attributes) can be proposed, tested in
real world usage, and subsequently either incorporated into the data model as an object class attribute, kept for use as a
ContextItem, or abandoned entirely.

Extensibility is decoupled from data model versions

The ContextItem system allows for the common object model (and other standards) to be extended without requiring
the release of a new version of the standard. This is critically important in industrial IT environments, where updating to a
new version of a data standard generally represents a huge expenditure of resources in migration, training, security audits,
and so forth. Following a data-driven approach enables users to retain the same standard version implementation for a
longer period while also allowing progress outside of the traditionally slow standards making process.

The use of external code lists to support data exchange in an industry is not a novel concept: a prime example of their
use is the ISO20022 standard used internationally by the financial industry. There is usually a tradeoff in such usage, in
that using external code lists makes it harder to validate a particular instance of the data model (because the code list is not
built into the model itself.) We believe that the impact of this problem is minimized in the ContextItem system, because all
of the ContextItemDefinition(s) (and their associated enumeration items) are readily available through the ContextItem
API in a single-format. Thus, implementing the mechanism to validate a ContextItem against all of the (limited number of)
possible ContextItem value types enables validating all possible ContextItems. This makes for very efficient and scalable
use of the system.

Minimal a priori knowledge needed for use

FMIS developers have heretofore often been forced to hard-code geopolitical-context-dependent attributes (often in
rapidly-changing regulatory contexts), and have had to manage multiple geopolitical-context-specific versions of their
software. This increases costs, and limits the implementation scalability (and market expansion) of FMIS products.

The ContextItem system should bring welcome relief, because it allows for the collection and communication of
data yet does not require the facilitating software to understand what that data means. This has rather revolutionary
implications for farm management information systems (FMIS):

When allowing the user to enter data to describe a given object (say, a person, a field, or a document) the FMIS can
search the ContextItem API by ModelScope and/or GeoPoliticalContext to find what ContextItemDefinitions are available
for the object being entered.

The ContextItem API can then deliver, for each of the available ContextItemDefinitions for that ModelScope, all the
data the FMIS needs to present the user with a user interface to populate the ContextItem.

Thus, by virtue of integrating once with the ContextItem system, a FMIS can allow users in multiple geographies to
enter data specific to those geographies, without making any changes to the code of the FMIS. Moreover, as the list of
ContextItemDefinitions for a given GeoPoliticalContext grows, the FMIS becomes progressively able to enter more and
more data pertaining to the local business processes.

A starting point for richer semantics in field operations data exchange

Business-process-specific data exchange among different FMIS is currently very limited by proprietary
implementations of geopolitical-context-dependent data. In practice this translates to inter-FMIS data exchange being very
infrequent. The ContextItem system is a major step toward building a semantically-rich vocabulary for industry-supported,
local-business-process-aware data exchange in production agriculture field operations. The authors hope this will translate
into greater electronic communication between growers and their trusted partners, a corresponding greater accuracy and
efficiency, and less opportunity for error.

ASABE Annual International Meeting Page 11

Enabling the use of existing controlled vocabularies
Various communities (research, industry, government) have made a great collective effort over time to develop

controlled vocabularies for use in agriculture. Examples include the AGROVOC thesaurus developed by FAO (Caracciolo
et al., 2013), the US National Resource Conservation Service’s list of management templates (NRCS, n.d.) , and the
European and Mediterranean Plant Protection Organization (EPPO) lists of plants, pests and pathogens (EPPO, 2015). An
informal survey of industry participants suggested that more widespread adoption of these vocabularies has been limited
by the need for ad-hoc implementations in FMIS to enable their use. The “one-size-fits-all’ ContextItem system enables
the widespread use of controlled vocabularies: if it can be encoded as a ContextitemDefinition, any ContextItem-enabled
FMIS can instantly use it.

Encoding proprietary payloads
During the development of the AgGateway Reference Data API system, several manufacturers expressed interest in

leveraging their investment in Reference Data API infrastructure to deliver premium content to selected subsets of users of
the API (e.g., paying or otherwise special customers.) The ContextItem system is consistent with this idea of enabling
premium (and/or proprietary) content delivery.

The proposed syntax for proprietary codes is: Pr_[GLN]_[Proprietary suffix]
Example: Pr_1234567890123_T45 would represent a proprietary code created by an organization with a Global

Location Number or GLN (GS1, n.d.) of 1234567890123. The meaning of the code, presumed known by the sender and
receiver of the data, is represented by the alphanumeric suffix T45. Note that only the initial "Pr_" prefix is required;
organizations lacking GLNs, or who choose not to include them into the code, can use any arbitrary alphanumeric syntax
following the initial underscore ("_") character.

Future Development
There is a process under development for anyone to submit new ContextItemDefinition(s) through AgGateway's

Standards and Guidelines committee. The expected publication date of the process is late 2016.
ContextItemDefinition(s) are made available through a RESTful web service (The expected publication date of the API

documentation is late 2016) but could (and should, to prevent unnecessary traffic) be cached locally in users’ systems.
Another avenue of future development involves adding mechanisms to assert relationships between

ContextItemDefinition(s), ContextItemEnumItem(s), and external sources of information. This will enable linking
ContextItemDefinitions or ContextItemEnumItems to definitions such as those found in AGROVOC or AgGateway’s
AgGlossary (www.agglossary.org), and asserting relationships among ContextItemEnumItems from different vocabularies
(e.g., different machinery manufacturers’ crop lists).

Conclusions
Current trends in sustainability, traceability, and compliance reporting demand an ever-increasing amount of data be

gathered as part of everyday modern production agriculture operations. Specific requirements for what data is collected,
how often it is collected, and the format it must be reported in, are constantly evolving and highly geo-political-context-
dependent. This makes fulfilling all of those requirements in a common object model an ever-moving target, unless it is
possible to decouple these frequently-changing data from an infrequently-changing core.

The solution adopted by the ADAPT team was to provide the relatively static and “universal” core components of the
ADAPT framework with placeholders for attaching ContextItem(s). Users of ISO 11783-10 task files can use the system
as well, attaching ContextItems via the link list file defined in ISO 11783-10 Annex E.

A controlled vocabulary is essential in properly communicating the meaning of data and, through its consistent use,
improves data quality. However, the dynamic nature of business and regulation requires this vocabulary to be easily
extensible. If this controlled vocabulary is allowed to become "stale", again, the data model’s relevance suffers. The
ContextItem system is intended to be a living resource, continuously updated cooperatively by the ag industry, and
distributed through a RESTful web service. It is a lightweight method for extending field operations object models, and an
elegant way to reconcile conflicting requirements.

Acknowledgements

The authors gratefully acknowledge Arren Mund (Ag Leader; AgGateway/SPADE3’s Reference Data API Product
Team Chair), Jim Wilson (AgGateway; Standards Director), Ben Craker (AGCO; AgGateway/SPADE3 Project Chair),
Shannon Haringx (Syngenta; AgGateway Precision Ag Council Communications Chair), the members of the
AgGateway/SPADE2-3 Reference Data API and Regulatory product teams, and the members of AEF’s PG9 team
(especially Martin Sperlich of CLAAS and Daniel Martini of KTBL) for their comments, suggestions and support.

http://www.agglossary.org/

ASABE Annual International Meeting Page 12

References
AgGateway (2015). The SPADE Project.
<http://s3.amazonaws.com/aggateway_public/AgGatewayWeb/About%20Us/CommunicationsKit/AgGatewaySPADE3_1
1415.pdf> (June 9, 2016)

AgGateway (2016). The ADAPT Toolkit: Implementing Interoperability in Precision Agriculture.
<http://s3.amazonaws.com/aggateway_public/AgGatewayWeb/About%20Us/AgGateway_ADAPT_Toolkit_5616.pdf>
(June 9, 2016)

Caracciolo, C., A. Stellato, A. Morshed, G. Johannsen, S. Rajbhandari, Y. Jaques and J. Keizer. (2013) The AGROVOC
Linked Dataset. Semantic Web 4(3): 341-348.

European and Mediterranean Plant Protection Organization (2015) EPPO codes: a brief description.
<http://www.eppo.int/DATABASES/GD&Codes/A4_EPPO_Codes_2015.pdf> (June 9, 2016)

GS1 (n.d.) Global Location Number (GLN). <http://www.gs1.org/gln> (June 9, 2016)

IANA (n.d.) – Language Subtag Registry <http://www.iana.org/assignments/language-subtag-registry/language-subtag-
registry> (June 9, 2016)

International Organization for Standardization. (2005). ISO/IEC 19501:2005 Information technology -- Open Distributed
Processing -- Unified Modeling Language (UML) Version 1.4.2. International Organization for Standardization, Geneva,
Switzerland.

International Organization for Standardization. (2013) ISO 20022 Financial services -- Universal financial industry
message scheme -- Part 1: Metamodel. International Organization for Standardization, Geneva, Switzerland. (See also
<http://www.iso20022.org>)

International Organization for Standardization. (2015). ISO 11783-10:2015 Tractors and machinery for agriculture and
forestry -- Serial control and communications data network -- Part 10: Task controller and management information
system data interchange. International Organization for Standardization, Geneva, Switzerland.

Kleene, Stephen C. (1956). Shannon, Claude E.; McCarthy, John, eds. Representation of Events in Nerve Nets and Finite
Automata. Automata Studies Princeton University Press. pp. 3–42.

Leach, P. J., Mealling, M., and Salz, R. (2005). “RFC 4122 - A Universally Unique IDentifier (UUID) URN Namespace.”
IETF Tools, <https://tools.ietf.org/html/rfc4122> (Jun. 9, 2016).

Lewis, T. (1998) Evolution of farm management information systems. Computers and Electronics in Agriculture 19(3):
233-248.

NRCS (n.d.) Crop Management Templates
<http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/tools/weps/cropmgnt/> (June 9, 2016)

UN CEFACT (2005), Recommendation No. 20 – Units of Measure used in International Trade.
<http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_rev3_Annex3e.pdf> (June 9, 2016)

W3C/IETF. (2001). “URIs, URLs, and URNs: Clarifications and Recommendations 1.0.” World Wide Web Consortium
(W3C), <https://www.w3.org/TR/uri-clarification/> (Jun. 9, 2016)

http://www.gs1.org/gln
http://www.iso20022.org/

	Author 1
	Affiliation
	Author 2
	Affiliation
	Author 3
	Affiliation
	Author 4
	Affiliation
	Author 5
	Affiliation
	Repeat the Author and Affiliation tables above for each additional author.
	Filling in the blanks with ContextItems: a lightweight method for extending field operations object models
	Written for presentation at the
	2016 ASABE Annual International Meeting
	Sponsored by ASABE
	Orlando, Florida
	July 17-20, 2016
	Introduction
	Basic ADAPT model concept: Identity and the CompoundIdentifier
	ContextItem System Data Model
	Properties of ContextItem and ContextItemDefinition
	ContextItem
	ContextItemDefinition: Basic Properties
	ContextItemDefinitions: Advanced Properties

	Examples
	Simple integer and string data entry ContextItemDefinitions
	Numeric ContextItemDefinitions for auxiliary purposes (e.g., ContextItemEnumItems’ Properties)
	Enumerated ContextItemDefinition
	Enumerated ContextItemDefinition with Properties
	Nested ContextItem

	Discussion
	Enabling incremental progress
	Extensibility is decoupled from data model versions
	Minimal a priori knowledge needed for use
	A starting point for richer semantics in field operations data exchange
	Enabling the use of existing controlled vocabularies
	Encoding proprietary payloads
	Future Development

	Conclusions
	Acknowledgements

	References

